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SUMMARY

In the past relaxation methods have been demon-
strated to be a powerful numerical tool for obtain-
ing steady-state solutions to the transonic poten-
tial equation. Ti11 now the main efforts were in the
development of quite general analysis procedures
while this paper presents a method for the analysis
as well as the design problem in threedimensional
transonic flow. On arbitrary sub-portions of the
configuration shape or pressure might be prescribed.
This allows the method to be applied in aerodynamic
design studies with the physical relevant quantities
being changed.

By use of this procedure a wing body combina-
tion has been designed and tested in the windtunnel.
Comparing the experimental results with the theore-
tically predicted ones different effects are shown
and the proof of assumptions is discussed.

UBERSICHT

Relaxationsverfahren haben sich in den letzten
Jahren als sehr wirksame Methoden zur numerischen
Losung der stationdren transsonischen Potentialglei-
chungen erwiesen. Bisher galt das Interesse der
Entwicklung von allgemein verwendbaren Nachrech-
nungsverfahren wihrend dieser Vortrag ein Verfahren
vorstelien wird, mit dem sowohl die Nachrechnungs-
als auch die Entwurfsaufgabe in dreidimensionaler
transsonischer Stromung gelgst werden kann. Dabei
kdnnen auf beliebigen Teilgebieten des Fliigels Druck
oder Kontur vorgegeben werden, was die Verwendung
bei aerodynamischen Entwurfsstudien besonders at-
traktiv macht.

Mit Hilfe dieses Verfahrens wurde eine Fligel-
Rumpf Kombination entworfen und nach Herstellung ei-
nes Modelles im Windkanal getestet. Der Vergleich
der gemessenen Druckverteilungen mit den vorher be-
rechneten enthdlt die kritische Diskussion verschie-
dener Effekte und den Nachweis getroffener Verein-
fachungen.

RESUME

Les années passées il a été montré que les me-
thodes de relaxation sont un outil numérique puis-
sant pour obtenir des solutions stationaires de
1'eéquation potentielle transonique. Jusqu'd présent
les plus grands efforts ont &té dérigés vers le dé-
veloppement de procédés d’analyse assez généraux
tandis que cette communication présente une méthode
valable aussi bien pour le probléme d'analyse que
celui de dessin en écoulement tridimensionel tran-
sonique. Sur des parties arbitraires de la confiqu-
ration on peut imposer la forme géométrique ou la
pression. Ceci permet d'appliquer la méthode & des
études de dessin aérodynamique en changeant les
quantités physiques importantes.

En utilisant ce procédé une combination aile-
fuselage a &té dessinée et contrdlée en soufflerie
En comparant les résultats expérimentaux avec les
prédictions theoriques différents aspects sont mis
en évidence et la preuve des hypothéses est discu-
tee.

1. INTRODUCTION

In the past few years numerical techniques for
the computation of the inviscid transonic potential
flow attained a high state of development. Mathe-
matically, the description of steady transonic flows
requires the solution of "mixed" equations, which
are elliptic in subsonic regions and hyperbolic in
supersonic ones. The problem is essentially non-
linear and solutions generally contain discontinui-
ties representing shock waves. The basic numerical
procedure used is that first introduced by Murman
and Cole [1]. It accounts for the mixed elliptic-
hyperbolic character of the governing equations by
using a mixed finite difference scheme. The gene-
ral procedure is to employ centered differences
when the flow is locally subsonic and one-side dif-
ferences when it is locally supersonic.

Using line relaxation different methods have
been developed to solve as well the full potential
equation as the small perturbation form. Threedimen-
sional results have been given for 1ifting wings and
also for lifting wing-body combinations [2-8]. First
attempts have been made also to take in account
windtunnel wall effects [3, 9] and threedimensional
viscous effects {9, 10].
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The present paper will show the development of a
threedimensional transonic design relaxation method
basing on the previous work. In wing design, gene-
rally, planform, Mach number and 1ift coefficient
are prescribed for the design point. From two-di-
mensional design studies a desireable chordwise
goal pressure distribution is conceived.

Either analysis methods can be applied itera-
tively to finally give the wing shape or design
methods have to be used the threedimensional pres-
sure distribution being fed in and the wing section
shapes being calculated. The first approach is be-
ing pursued at NASA AMES [11] using an optimizer in
combination with the AMES analysis method. For given
constraints pressure distribution and shape are com-
puted which produce minimum drag. Our approach will
follow along the second line. The procedure and
program development has been described in [12] in
detail.

2. TRANSONIC POTENTIAL THEORY

We begin the discussion of our threedimensional
transonic relaxation method by considering the dif-
ferent assumptions behind the steady transonic per-
turbation equation and the boundary conditions.

The validity of those assumptions is proved by
error estimates for the type of flow being of in-
terest.

2.1 Basic Equations

The threedimensional steady velocity potential ¢
is expanded as

d(x,y,2) = U, {x+ed (x,y,2)} (1)

2,
using a scaling factor € = d'é/Mm, § being some
mean relative thickness value.

Looking in detail at the velocity distributions
being considered for supercritical wing flow as
shown in figure 1 we can state that

0 square terms of disturbance velocities are
small compared with one, e2¢y2, e2¢y?
e?¢z® << 1

o disturbance velocities are not small compared
with one, but (k-1) M 2 e¢y << 1

o K1 M 2e? (dy?+¢z%) << (1-M_?), except if M_ is
close to one

0 551 M 2e%¢,? is not << (1-M_2)

This finally leads to the perturbation equation
in the disturbance potential.

T(1-M,2)- (e 1)M e(1450.) oy} bxx + dyy + 022
- 2 =
Me 10,0,,40,0,,1 = 0 (2)
If in addition the assumptions

(o] e¢x, e¢y, e¢z << 1

0 €¢y¢xy, E¢Z¢XZ << { } ¢XX

would be valid, equation (2) would simplify to the
well known classical small disturbance equation

{(I—Mmz)-(ld-l)MmZed)x} Oy * ¢yy +4¢,,=0 (3)

Knowing that equation (2) is not consistent in
the sense of second or higher order expansions it
should be kept in mind that it is a better approxi-
mation to the full potential equation as far as the
residual error terms are concerned for the classes
of wings mentioned.

2.2 Boundary Conditions

Flow tangency condition at the surface with its
local normal vector # including the angle of attack
is expressed as

(l+eg, )n, + epyn, + ep,n, = 0 (4)

From the previous chapter it is known that e¢y,
e¢y, €¢z are not small compared with one any more,
i.e. simplifications of equation (4) are only al-
lowed if ny << n,, Figure 2 shows that this is not
true for swept wings due to the sweep angle or due
to the variation of thickness in spanwise direction.

Therefore we do not intend to use the classical
linearized wing boundary condition for highly Jloaded
swept wings.

For arbitrarily shaped closed bodies it is well
known that none of the terms in equation (4) can
either be simplified or neglected. Only for in-
finite long bodies with no change in cross sec-
tion with length equation (4) can be simplified to

¢yny + o0, = 0 (5)
The wake boundary condition is included in the

well known way neglecting wake curvature as shown
in previous publications [6].

2.3 Far Field Solutions

Not using any transformations to put infinity to
a finite domain we have to introduce far field so-
lutions along the boundaries of the domain in which
the flow field has to be calculated from the poten-
tial equation. Those far field solutions have to
satisfy the flow field between the finite domain
and infinity. Some distance away from the configu-
ration the subsonic flow field can be described by
the linear potential equation. Therefore classical
source and vortex methods can be used.

The most classical way is that of Klunker, unfor-
tunately mismatching the normal velocities ¢, resp.
¢y along the farfield boundaries. Instead, a wing
vortex lattice giving ¢y, ¢ can be used [9] or a
full solution along the boundary applied [13].

To simulate the presence of wind tunnel walls
wall conditions can be included as described in
[91.
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2.4 Pressure Coefficients

Consistent with the assumptions which led to the
basic perturbation equation (2) the isentropic pres-
sure coefficient relationship is reduced by second
order series expansion to

- _ M 2V .24 2.2 2 2
cp = {2€¢x+(1 M2 e?o, Pre (¢y +0, )} (6)
Forces and moments can be integrated by numeri-
cal means from the local pressures.

3. DESIGN PROCEDURE

Designing a new wing, generally planform, design
point 1ift coefficient and Mach number are given.
From twodimensional studies also a desired design-
pressure distribution for the threedimensional wing
is given. The core of the design process is now to
find the wing section shapes that produce such pres-
sure distributions. While this can be done by trial
and error using an analysis procedure as described
in the previous chapter, it is more efficient to
have a design method available, in which the pres-
sure distribution is the given boundary condition,
while the shape i.e. the normal velocity component
is the unknown.

This classical Dirichlet problem is generally
solved by prescribing the tangential velocity u=¢y
instead of the normal velocity component as boun-
dary condition. From own twodimensional studies it
was found that in a relaxation procedure this way
seems to fail, the reason being the a priori un-
known potential distribution in front of the wing.
Instead in a similar manner 1ike Steger und Kline-
berg [141 and Langley [15] for aerofoil design also
for wing design the vorticity equation can be used
as an intermediate step which must be fulfilled.
The steps in such a design procedure are

0 prescribe pressure cp

o from similar solutions or iteratively suggest
the velocities ¢y and ¢,

o calculate the tangential velocity ¢, from the
given Cp €q. (6) by use of ¢y, ¢, from the
second step

o for use in the vorticity equation
Oz = ¥2x

calculate the cross derivative ¢y, by differen-
tiation in z

o now integrate in x-direction to get a boundary
condition in ¢,

¢Z = f ¢XZ dx

to have a Neumann type direct boundary condi-
tion.

By such a procedure the inverse problem is re-
duced to a direct one which can be solved by the
standard procedure.
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4. NUMERICAL PROCEDURE

The basic feature of the numerical method is to
solve the transonic perturbation equation in a rec-
tangular grid box with variable mesh size as shown
in fig. 3. Like in the twodimensional method of
Murman and Cole [1] we account for the mixed ellip-
tic-hyperbolic nature of the equation by central
differences for the streamwise derivatives when the
equation is elliptic and backward when the equation
is locally hyperbolic. The y- as well as the z-deri-
vatives are replaced everywhere by second order cen-
tral differences.

The resulting set of nonlinear algebraic equa-
tions is solved iteratively be line relaxation. Each
line forms an equation with a tridiagonal matrix for
which fast solution procedures exist. For hyperbolic
points under-relaxation (w = 0.7 ¢ 0.9) is used, for
elliptic points over-relaxation (w = 1.7 + 1.9)

1

2
¢\)+1 - ¢v +6 {¢v+ _ ¢v}
The scheme is fully conservative and for shock
points a shock point operator is used.

5. MODEL DESIGN AND TESTING

To have detailed experimental data to compare
the described method with and to show its appli-
cability to threedimensional wing design a wind
tunnel model within the PT-series [16] was designed
and tested. A three side view of this PT7-model is
shown in figure 4. It consists of a cylindrical body
with a lTow mounteg trapezoidal swept wing (AR = 4,
A= 0.4, 9,5 = 35°). The design goal was to reach at
M = 0.9 a 1ift coefficient of 0.2 having a relative
thickness of > 9 % in streamwise direction. The
pressure distribution was assumed to be of roop-top
type with parallel isobars and a local Mach number
ahead of the shock M < 1.30.

The numerical design proceeded along the follow-
ing Tlines:

o A basic guess for the wing section shape is
taken from a twodimensional airfoil having the
prescribed properties.

This led to a threedimensional pressure distri-
bution with a too strong inboard shock and a too
small front loading in the tip section.

o Prescribe upper surface pressure distribution
retaining lower surface shape. The results are
reasonable pressure distributions but section
shapes which do not close (too thick or nega-
tive thickness).

o Rotate lower surface around section nose points
to obtain closure.

This led to a reasonable pressure distribution ex-
cept at the most outboard stations but with a too
small plateau and a thin last 20 % of chord for the
root section due to the concave upper surface (see
figure 5).



o Add thickness to the Tower surface in the root
region, modify nose shape, change twist to get
thicker trailing edge portions, extended pla-
teaus, improved tip section.

The result turned out to be almost the final
design. Now a geometry definition package [17]
was used to get smooth, continuous surfaces. Re-
peated applications of the analysis program and
definition package had to insure that the geometry
changes did not destroy the target pressure dis-
tribution. The final shape and pressure distribu-
tion can be seen from figure 6. The final thickness
distribution is shown in figure 7.

Verifying this geometry a windtunnel model was
built at FFA and tested extensively in the FFA 54
transonic wind tunnel (figure 8). Balance tests and
pressure measurements have been carried out at
Reynolds numbers of 1.1-1.8+10° within a Mach
number range of 0.5-0.97. Pressure measurements
were done ‘at three chordwise sections 1,2,3 being
at the same span stations as the computational
sections 5,10,16. 0i1 flow pictures were taken to
show the presence of shocks and shock induced
separation. To get at least some information about
the behaviour at higher Reynolds numbers three
different transition positions were tested. At
first transition was fixed 8 mm behind the leading
edge by use of 0.2 mm spheres mounted with 4 mm
spacing, secondly tests were performed with free
transition and a third set of tests was done with
fixed transition at 50 % chord using a band of
carborundum grains with 0.2 mm diameter.

6. RESULTS

A detailed description of the test results and
the comparison with computed pressures and forces
as well as the boundary layer behaviour will be
given in reference 18. The present paper will give
‘only a first comparison between previously computed
design pressure distributions and the experimental-
ly verified ones. While preparing this paper not
all of the mentioned experimental results were
available.

Figure 9 shows the oil flow pattern for the
design point My, = 0.9, a = -10 and fixed transition
at 8 mm behind the leading edge. A shock is present
almost parallel to the trailing edge with a strong
cross flow behind the shock in the inner 50 % of
the halfspan but with no separation. On figure 10
the pattern for a = 0% indicate a much stronger
shock almost at the same location but with separa-
tion behind the shock. As indicated in more detail
on figure 11 which shows only the innermost part of
the pattern at o = 0% the shock and separation
starts approximately at 20 % halfspan of the exposed
wing.

The measured pressures for a = -1° and M,=0.899
are shown on figures 12 a-c. For comparison the
previously calculated design-pressures are included
as solid lines. The computed 1ift and drag coeffi-
cients for the inviscid flow with shock point
operator were C; = 0.27 and Cp = 0.01 while the
experimental ones were measured as €| = 0.23 and
Cp = 0.023. Measured and calculated pressures agree
quite well especially keeping in mind that in the
quite coarse mesh with 41 x 28 x 29 points in x-y-z

direction section 1 containes only 14 points along
its chord, section 3 even only 11 points, starting .
at 5 % local chord. This will explain the differen-
ces at the leading edge. Shock position and trail-
ing edge pressures are influenced by viscous ef-
fects which are not included in the theoretical
results yet. A more detailed analysis using three-
dimensional boundary layer method and the displace-
ment thickness concept as shown in ref. 9 will give
better agreement at least for the shock position in
station 1. The tendency of a theoretically predicted
shock position with less sweep along span can be
explained by the lack of the cross terms in eq. (2).
It should be kept in mind that all the theoretical
results shown in the present paper were computed
using eq. (3), due to some problems in finding the
proper operators for eq. (2) which did not give
results while this paper was prepared.

Figures 13 a-c include the comparisons for
Mo = 0.9 and o = 09. The agreement still is quite
good and the different deviations can be explained
in the same way. The shocks are stronger but nearly
remain at the same chordwise position. While for
Mo = 0.9 and o = -10 the maximum Tocal Mach numbers
were calculated to be less or equal 1.3, for a = 0
the Tocal Mach numbers ahead of the shock were
larger than 1.3. First threedimensional boundary
layer calculations also indicated no separation for
a = -19 ysing the theoretical pressure distribution
while there seemed to be separation for o = 0°
starting at 20 % halfspan of the exposed wing.
Finally figures 14 and 15 show the comparisons for
the lower Mach number M, = 0.87 and a = 0O, resp.
a = 10, Again, the measured pressures agree quite
well with those theoretically predicted before the
experimental data were known.

7. CONCLUSION

A transonic analysis and design method was
developed and tested by designing the transonic
wing body configuration PT7. Detailed wind tunnel
experiments verified the design pressures and
proved the computational method to be a helpful
tool in transonic aerodynamic aircraft design.
Still some improvements on the method have to be
done to give better results for highly loaded swept
and tapered wings.

This goal can be reached by developing a
method which solves the full potential equation but
it seems to be sufficient to include some more
terms in the perturbation equation as indicated by
eq. (2). Pay-off would be a much faster numerical
method than solving the full potential equation.

Basing on the present PT7 design a more ela-
borate redesign will be done in the near future
including boundary layer calculations and the
improved potential flow method. Also, the design
pressure distribution will be changed to a more
realistic one having better rear loading and an
improved nose shape.
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